9. Consistent framing in a strategic setting

- So far we assumed that output is affected by
- Our own activities or choices
- States
- We considered single person decision problems
- This might not be appropriate to model some decisions/choices
- It might happen that output is affected not only by our own decisions but also by the choices of others
- Strategic interaction is present
- If this is a first order effect it should be considered
- Game theory is to be applied

Equilibrium Behavior

- Keeping things as simple as possible but considering strategic interaction output is now affected by
- Our own activities or choices
- The activities and choices of one more player
- States
- Both players choose from a set of alternatives

$$
\begin{aligned}
& a_{1} \in A_{1} \\
& a_{2} \in A_{2}
\end{aligned}
$$

- Criterion functions for both individuals are denoted:

$$
\omega_{1}\left(a_{1}, a_{2}\right), \omega_{2}\left(a_{1}, a_{2}\right)
$$

- Uncertainty is typically present such that criterion functions are expected utility measures

Simultaneous Choice

- Assumptions:
- Both players know the sets of alternatives of both players, A_{1} and A_{2}
- They know each others criterion functions $\omega_{1}\left(a_{1}, a_{2}\right), \omega_{2}\left(a_{1}, a_{2}\right)$
- The pair of choices is a (nash-) equlibrium if the following holds:

$$
\begin{aligned}
& a_{1}^{*} \in \arg \max _{a_{1} \in A_{1}} \omega_{1}\left(a_{1}, a_{2}^{*}\right) \\
& a_{2}^{*} \in \arg \max _{a_{2} \in A_{2}} \omega_{2}\left(a_{1}^{*}, a_{2}\right)
\end{aligned}
$$

- Mutual best response of each player

Sequential Choice

- Assuming sequential choice implies that
- One player moves first
- The second player observes this move
- The second player moves based on this knowledge
- The game is solved by backwards induction
- A reaction function is derived
- Assume player 1 moves first and chooses $\widehat{a_{1}} \in A_{1}$
- Player 2 chooses a_{2} optimally given $\widehat{a_{1}}$
- Optimization problem: $\max _{a_{2} \in A_{2}} \omega_{2}\left(\hat{a}_{1}, a_{2}\right)$
- Repeating this for each possible choice of player 1 results in a reaction function:

$$
\max _{a_{1} \in A_{1}} \omega_{1}\left(a_{1}, R\left(a_{1}\right)\right)
$$

- The optimal choice for player 1 is derived by maximizing the objective function w.r.t. a_{1}

$$
\max _{a_{1} \in A_{1}} \omega_{1}\left(a_{1}, R\left(a_{1}\right)\right)
$$

- The equilibrium is characterized by $\left(a_{1}^{*}, R\left(a_{1}\right)\right)$
- The criterion function value for each player i in equilibrium equals

$$
\omega_{i}\left(a_{1}^{*}, R\left(a_{1}^{*}\right)\right)
$$

- Note: the optimal move of player 2 depends fully on the move of player 1 (first mover advantage)
- Essentially the third principle of consistent framing is applied:
- The choice setting is transformed in a single person decision problem

Repeated choice

- What happens when a game is played repeatedly?
- Most simple setting: a game is played twice
- Before the second round starts both players know the moves and outcomes from the first round
- Backward induction is applied again
- We start playing the second round
- Second period (final round) equilibrium equals one shot game equilibrium
- Given this knowledge first period equilibrium also equivalent to one shot game equilibrium
- This holds for all finite games with known number of rounds to be played
- Another application of the third principle of consistent framing

Sharing a market

- Two firms compete for market share
- The market price depends on the total quantity offered
- Profit for each firm equals revenue less cost

$$
\Pi_{i}\left(q_{1}, q_{2}\right)=\hat{P}\left(q_{1}+q_{2}\right) * q_{i}-C\left(q_{i} ; P\right)
$$

- Note: the profit of each firm depends on the quantities chosen by both players
- The pair of output quantities that constitute a Nash equilibrium are defined as follows:

```
q1* G arg max }\mp@subsup{\operatorname{max}}{\mp@subsup{q}{1}{}\geq0}{*}\mp@subsup{\pi}{1}{}(\mp@subsup{q}{1}{},\mp@subsup{q}{2}{*}
q}\mp@subsup{2}{2}{*}\in\operatorname{arg}\mp@subsup{\operatorname{max}}{\mp@subsup{q}{2}{}\geq0}{}\mp@subsup{\pi}{2}{}(\mp@subsup{q}{1}{*},\mp@subsup{q}{2}{}
```


Racing to capture a Market

- Basic assumptions of the game:
- First-mover advantage leads to capture of the whole market
- The first to enter the market receives a "price" \hat{P}
- Coming in second is of no value
- Two competitors are present
- One of them will secure the price
- The probability of winning depends on the amount invested in R\&D relative to the competitor
- Investments are denoted z_{1} and z_{2}
- The probability to win the race is given by

$$
p_{i}\left(z_{1}, z_{2}\right)=\frac{1+z_{i}}{1+z_{1}+1+z_{2}}=\frac{1+z_{i}}{2+z_{1}+z_{2}}
$$

- Expected profit for each of the competitors equals

$$
\Pi_{i}\left(z_{1}, z_{2}\right)=p_{i}\left(z_{1}, z_{2}\right) * \hat{P}-z_{i}=\frac{\left(1+z_{i}\right) \hat{P}}{2+z_{1}+z_{2}}-z_{i}
$$

- Both competitors simultaneously make their R\&D decisions
- The following strategies constitute a Nash equilibrium

$$
\begin{aligned}
& z_{1}^{*} \in \arg \max _{z_{1} \geq 0} \pi_{1}\left(z_{1}, z_{2}^{*}\right) \\
& z_{2}^{*} \in \arg \max _{z_{2} \geq 0} \pi_{2}\left(z_{1}^{*}, z_{2}\right)
\end{aligned}
$$

First order conditions for both competitors equal:

$$
\frac{\partial \Pi_{1}\left(z_{1}, z_{2}^{*}\right)}{\partial z_{1}}\left|z_{1}=z_{1}^{*}=\frac{\left(1+z_{2}^{*}\right) \hat{P}}{\left(2+z_{1}+z_{2}^{*}\right)^{2}}-1=0 \quad \frac{\partial \Pi_{2}\left(z_{1}^{*}, z_{2}\right)}{\partial z_{2}}\right| z_{2}=z_{2}^{*}=\frac{\left(1+z_{1}^{*}\right) \hat{P}}{\left(2+z_{1}^{*}+z_{2}\right)^{2}}-1=0
$$

- solving for z_{i} results in

$$
z_{i}=\frac{1}{4} \hat{P}-1
$$

Bidding for a prize

- The bidding game:
- A customer asks for a customized product
- Two potential bidders are present (firm 1 and firm 2)
- If both suppliers hand in a bid the lower one wins
- If both bidders submit the same bid the winner is randomly selected
- The bids are submitted simultaneously
- The bidders are risk neutral and face identical cost structures

$$
\Delta=\alpha x+\beta y+\gamma z
$$

$-x, y$, and z are independent, identically distributed random variables with uniform densities between 0 and 1

- Expected incremental cost for each firm:

$$
E[\Delta]=E[\alpha x+\beta y+\gamma z]=\alpha E[x]+\beta E[y]+\gamma E[z]=(\alpha+\beta+\gamma) / 2
$$

- What is the incremental gain of firm 1 ?

$$
\Pi_{1}\left(b_{1}, b_{2}\right)=\left\{\begin{array}{l}
0 \text { if } b_{1}>b_{2} \\
b_{1}-\Delta \text { if } b_{1}<b_{2} \\
.5\left(b_{1}-\Delta\right) \text { if } b_{1}=b_{2}
\end{array}\right.
$$

- What about firm 2?
- The following bidding strategies constitute a Nash equilibrium:

$$
b_{1}^{*} \in \arg \max _{b_{1}} E\left[\Pi_{1}\left(b_{1}, b_{2}^{*}\right)\right] \quad b_{2}^{*} \in \arg \max _{b_{2}} E\left[\Pi_{2}\left(b_{1}^{*}, b_{2}\right)\right]
$$

Equilibrium Bids

- Bidding the expected cost $E(\Delta)=b_{1}^{*}=b_{2}^{*}$ is equilibrium behavior for both firms
- Given one firm bids expected cost the other cannot do better
- If it bids higher, it looses for sure
- If it bids lower, it makes an expected loss
- Equilibrium expected profit is zero

Extension: Private information

- Both firms observe some information before bidding
- Firm 1 observes x and y
- Firm 2 observes x and z
- Both firms know that the other one has received information
- Given the information both firms update expectations on cost

$$
\begin{aligned}
& E[\Delta \mid x, y]=\alpha x+\beta y+\gamma E[z]=\alpha x+\beta y+\gamma / 2 \\
& E[\Delta \mid x, z]=\alpha x+\beta E[y]+\gamma z=\alpha x+\beta / 2+\gamma z
\end{aligned}
$$

- Two things change as compared to the previous story
- Equilibrium will be described by bidding functions, depending on (x, y, z)
- The bidding behavior of each firm conveys information

Implication of winning a bid

- Consider firm 1
- It knows x and y
- It submits a bid based on that knowledge
- If it wins the bit, it learns something about z
- Possibly z is higher than expected as firm 2 bids are increasing in z
- Expected cost, given firm 1 won the bid, can be described as

$$
E\left[\Delta \mid x, y, b_{2}>b\right]=\alpha x+\beta y+\gamma E\left[z \mid b_{2}>b\right]
$$

- Based on that firm 1's expected profit equals

$$
\begin{aligned}
E\left[\Pi_{1}\left(b, b_{2}\right) \mid x, y\right]= & 0 * \operatorname{prob}\left\{b_{2}<b\right\}+\left(b-E\left[\Delta \mid x, y, b_{2}>b\right]\right) * \operatorname{prob}\left\{b_{2}>b\right\} \\
& +.5\left(b-E\left[\Delta \mid x, y, b_{2}=b\right]\right) * \operatorname{prob}\left\{b_{2}=b\right\}
\end{aligned}
$$

- Strategies that constitute a (Bayesian) equilibrium are:

$$
\begin{aligned}
& b_{1}^{*}(x, y) \in \arg \max _{b} E\left[\Pi_{1}\left(b, b_{2}^{*}(x, z)\right) \mid x, y\right] \forall x, y \in[0,1] \\
& b_{2}^{*}(x, z) \in \arg \max _{b} E\left[\Pi_{2}\left(b_{1}^{*}(x, y), b\right) \mid x, z\right] \forall x, z \in[0,1]
\end{aligned}
$$

- Explicitly the following bidding functions form an equilibrium

$$
\begin{aligned}
& b_{1}^{*}(x, y)=\alpha x+(\beta+\gamma) / 2+(\beta+\gamma) y / 2 \\
& b_{2}^{*}(x, z)=\alpha x+(\beta+\gamma) / 2+(\beta+\gamma) z / 2
\end{aligned}
$$

The winner's curse

OTTO VON GUERICKE UNIVERSITÄT MAGDEBURG

TABLE 10.1: Equilibrium Implications

$$
\begin{aligned}
& \text { bidding strategies } \\
& \quad b_{1}^{*}(x, y)=\alpha x+(\beta+\gamma) / 2+(\beta+\gamma) y / 2 \\
& b_{2}^{*}(x, z)=\alpha x+(\beta+\gamma) / 2+(\beta+\gamma) z / 2 \\
& \text { difference in bids } \\
& \quad b_{1}^{*}(x, y)-b_{2}^{*}(x, z)=\frac{\beta+\gamma}{2}(y-z) \\
& \text { expected profit given information } \\
& \quad E\left[\Pi_{1}\left(b_{1}^{*}(x, y), b_{2}^{*}(x, z)\right) \mid x, y\right]=.5 \beta(1-y)^{2} \\
& \quad E\left[\Pi_{2}\left(b_{1}^{*}(x, y), b_{2}^{*}(x, z)\right) \mid x, z\right]=.5 \gamma(1-z)^{2} \\
& \text { expected cost prior to bid } \\
& \quad E[\Delta \mid x, y]=\alpha x+\beta y+\gamma / 2 \\
& E[\Delta \mid x, z]=\alpha x+\beta / 2+\gamma z \\
& \text { revised expected cost if bid wins } \\
& \quad E\left[\Delta \mid x, y, b_{1}<b_{2}\right]=\alpha x+\beta y+\gamma(1+y) / 2 \\
& \quad E\left[\Delta \mid x, z, b_{2}<b_{1}\right]=\alpha x+\beta(1+z) / 2+\gamma z \\
& \text { bias in initial cost estimate } \\
& \quad E\left[\Delta \mid x, y, b_{1}<b_{2}\right]-E[\Delta \mid x, y]=\gamma y / 2 \\
& \quad E\left[\Delta \mid x, z, b_{2}<b_{1}\right]-E[\Delta \mid x, z]=\beta z / 2 \\
& \text { bid as expected cost plus markup } \\
& \quad b_{1}^{*}(x, y)=E[\Delta \mid x, y]+\gamma y / 2+\beta(1-y) / 2 \\
& b_{2}^{*}(x, z)=E[\Delta \mid x, z]+\beta z / 2+\gamma(1-z) / 2
\end{aligned}
$$

Haggling

- A single buyer and seller are present
- Cost of the seller is $\Delta=\alpha x$
- The value of the good to the buyer is V
- Social gain of a deal is $\mathrm{V}-\Delta$ if $\mathrm{V}>\Delta$
- How is the overall gain shared between the parties?
- Nash bargaining solution: (V- Δ)/2
- Private cost information
- Only the seller knows the cost
- Example: Δ is either 1 or 2 with equal probability, $\mathrm{V}=4$
- The buyer makes a "take it or leave it offer"
- If the seller disagrees the game ends, otherwise the deal is made
- Assume the odds are 0.8 for low cost and 0.2 for high cost instead

Internal Control

- Equilibrium analysis helps us to identify how choices are made in strategic settings
- It also shows that finer details of the game matter a great deal
- The accounting system
- Is a system that receives input from many individuals
- It's outcome is a result of various choices
- The "accounting library" is subject to regulation
- Regulation affects the finer details
- Decision rights are limited
- Redundancy is built in
- Incentives are built in
- This is what is often termed "Internal Control"

